If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9x^2+30x-600=0
a = 4.9; b = 30; c = -600;
Δ = b2-4ac
Δ = 302-4·4.9·(-600)
Δ = 12660
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{12660}=\sqrt{4*3165}=\sqrt{4}*\sqrt{3165}=2\sqrt{3165}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(30)-2\sqrt{3165}}{2*4.9}=\frac{-30-2\sqrt{3165}}{9.8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(30)+2\sqrt{3165}}{2*4.9}=\frac{-30+2\sqrt{3165}}{9.8} $
| 3y=8-8 | | 7x2−6x+3=3 | | 6x+8x=168 | | 12=1/3*6h | | 12=1/36h | | 0.60x+0.60(20)=0.30(60) | | 2x+4=3(x2)+1 | | 0.60x+0.90(60)=0.30(102) | | 1/2(4x+6)=-5+24.7 | | -2z=11-3z | | 4x-10-3x=1x+90 | | 8=y-12 | | 11/12k=33. | | -2(x+5)-6=-10 | | (x-8)^2=4 | | 5(3x+3)=-5(3x-4)+2x | | 5(x+3)=20(x+2) | | -2n+2^n=240 | | 2^n-2n=240 | | 4-1/4x=5 | | 2x+2=20x-4 | | 2^n-2n-240=0 | | -22.9=u/6-3.7 | | -8+5y=-33 | | 178=127-x | | 2(x-7)+7=7x-(5x+2)-5 | | 2x-14=6x+13 | | 5x+63=7(x-9 | | 2/7*14=h | | 8x-(4x=4)=24 | | 7(5x-8)=14 | | 15y^2=0 |